metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xiao-Hang Qiu* and Xiao-Lan Tong

Department of Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail: qiuxh@nankai.edu.cn

Key indicators

Single-crystal X-ray study T = 294 K Mean σ (C–C) = 0.006 Å R factor = 0.038 wR factor = 0.096 Data-to-parameter ratio = 17.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. {2-[2-(1*H*-Benzimidazol-2-yl)ethyliminomethyl]-4bromophenolato}chlorozinc(II) methanol solvate

The title compound, $[Zn(C_{16}H_{13}BrN_3)Cl]\cdot CH_4O$, has been prepared by the reaction of 2-[2-(1*H*-benzimidazol-2-yl)ethyliminomethyl]-4-bromophenol with zinc(II) chloride. The central Zn atom is coordinated by two N atoms and one O atom from the phenolate ligand, along with a Cl⁻ anion, which provide a distorted tetrahedral environment. Intermolecular $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonds link two Zn complex molecules and two methanol solvent molecules into a centrosymmetric cluster. The crystal packing is further stabilized by weak $C-H\cdots Cl$ hydrogen bonds. Received 5 September 2005 Accepted 11 October 2005 Online 15 October 2005

Comment

Benzimidazole and its derivatives have attracted a great deal of attention in recent years due to their biological activites and their strong coordination abilities as multidentate ligands, which provide metal complexes having a broad scope of properties (Carcanagne *et al.*, 2002). Zinc is an essential element for all forms of life, because of its presence at the active sites of various enzymes (Lipscomb & Straeter, 1996). Zinc complexes may be found in numerous biological systems. They function not only as catalytic centres in enzymes, but also as structural elements supporting three-dimensional protein structure (Vallee & Auld, 1990). In this work, we present the crystal structure of a new zinc(II) benzimidazole complex, the title compound, (I) (Fig. 1).

In (I), the Zn^{II} centre has a distorted tetrahedral coordination, formed by two N atoms and one O atom from the ligand and one Cl⁻ anion. The Zn–O and Zn–N bond distances (Table 1) correspond to those reported in the literature (Xiao *et al.*, 2004). The Zn1–Cl1 bond distance of 2.1985 (11) Å is smaller than that in a reported benzimidazole zinc complex (Lin *et al.*, 2004). The N2–Zn1–N1 and O1–Zn1–Cl1 bond angles of 93.55 (12) and 108.21 (9)°, respectively, indicate a large distortion of the tetrahedral coordination.

Intermolecular $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonds (Table 2) link two Zn complexes and two methanol molecules

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

 $\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$

 $I > 2\sigma(I)$

Figure 1

A view of (I), with the atom-labelling scheme and 30% probabilty displacement ellipsoids.

Figure 2

A packing diagram, viewed down the b axis. H atoms not participating in the intermolecular hydrogen bonds (dashed lines) have been omitted for clarity.

into a centrosymmetric cluster. The crystal packing (Fig. 2) is further stabilized by weak $C-H \cdots Cl$ hydrogen bonds (Table 2).

Experimental

The title compound was prepared by adding a methanol solution (5 ml) of zinc chloride (0.1 mmol) to a methanol solution (10 ml) of N-(5-bromosalicylidine)-2-aminoethylbenzimidazole (0.1 mmol; Das & Dash, 1995) neutralized with triethylamine (0.1 mmol). The mixture was stirred for about 2 h and then filtered. The filtrate was slowly evaporated at room temperature to yield colourless crystals of (I) suitable for X-ray analysis. Analysis, calculated for C17H17ClBrZnN3O2: C 42.88, H 3.60, N 8.83%; found: C 42.36, H 3.52,N 9.01%.

Crystal data

[Zn(C ₁₆ H ₁₃ BrN ₃ O)Cl]·CH ₄ O	$D_x = 1.666 \text{ Mg m}^{-3}$
$M_r = 476.07$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 2554
a = 7.4425 (17) Å	reflections
b = 13.989 (3) Å	$\theta = 2.3 - 23.5^{\circ}$
c = 18.936 (4) Å	$\mu = 3.56 \text{ mm}^{-1}$
$\beta = 105.739 \ (8)^{\circ}$	T = 294 (2) K
V = 1897.6 (7) Å ³	Block, colourless
Z = 4	$0.22 \times 0.20 \times 0.12 \text{ mm}$

Data collection

227 parameters

Bruker SMART CCD area-detector diffractometer	3864 independent reflections 2350 reflections with $I > 2\sigma(I$
φ and ω scans	$R_{\rm int} = 0.047$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.4^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -9 \rightarrow 7$
$T_{\rm min} = 0.495, T_{\rm max} = 0.653$	$k = -17 \rightarrow 9$
10548 measured reflections	$l = -22 \rightarrow 23$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0356P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.038$	+ 0.893P]
$wR(F^2) = 0.096$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} = 0.001$
3864 reflections	$\Delta \rho_{\rm max} = 0.46 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1 Selected geometric parameters (Å, °).

H-atom parameters constrained

Zn1-O1	1.940 (3)	Zn1-N1	2.018 (3)
Zn1-N2	2.002 (3)	Zn1-Cl1	2.1985 (12)
O1-Zn1-N2	120.83 (12)	C1-O1-Zn1	122.2 (3)
O1-Zn1-N1	92.78 (12)	C7-N1-Zn1	123.0 (3)
N2-Zn1-N1	93.55 (12)	C8-N1-Zn1	116.9 (3)
O1-Zn1-Cl1	108.21 (9)	C10-N2-Zn1	125.3 (3)
N2-Zn1-Cl1	112.08 (9)	C11-N2-Zn1	128.0 (2)
N1-Zn1-Cl1	129.27 (10)		

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O2-H2\cdots O1^{i}$	0.82	1.84	2.655 (4)	172
$N3-H3A\cdots O2^{ii}$	0.86	1.88	2.716 (4)	163
C6-H6···Cl1 ⁱⁱⁱ	0.93	2.83	3.600 (5)	141
$C8-H8B\cdots Cl1^{iv}$	0.97	2.88	3.589 (4)	131
$C14{-}H14{\cdot}{\cdot}{\cdot}Cl1^v$	0.93	2.82	3.698 (4)	159

Symmetry codes: (i) x, y, z; (ii) -x + 1, -y, -z - 1; (iii) x - 1, y, z; (iv) $-x + 2, y + \frac{1}{2}, -z - \frac{1}{2}$; (v) $x, -y - \frac{1}{2}, z - \frac{1}{2}$

H atoms were included in calculated positions and refined as riding, with C-H = 0.93–0.97 Å, N-H = 0.86 Å and O-H = 0.82 Å, and with $U_{iso}(H) = 1.2-1.5U_{eq}$ of the parent atom.

Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-NT (Bruker, 1998); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-NT (Bruker, 1998); software used to prepare material for publication: SHELXTL-NT.

This work was supported by the Innovation Foundation of Nankai University.

References

- Bruker (1998). SMART-NT (Version 5.1), SAINT-NT (Version 5.1) and SHELXTL-NT (Version 5.1). Bruker AXS, Madison, Wisconsin, USA.
- Carcanagne, D., Shue, Y.-K., Shue, M. A., Wuonola, M. A. & Uria-Nickelsen,
- M. (2002). J. Med. Chem. 45, 4300-4309.
- Das, N. N. & Dash, A. C. (1995). Polyhedron, 14, 1221-1227.

- Lin, X.-J., Shen, Z. & Xu, H.-J. (2004). Inorg. Chem. Commun. 7, 1167–1169.
- Lipscomb, W. N. & Straeter, N. (1996). *Chem. Rev.* **96**, 2375–2434. Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

- Vallee, B. L. & Auld, D. S. (1990). Biochemistry, 29, 5647-5659.
- Xiao, B., Han, H.-Y. & Meng, X.-R. (2004). Inorg. Chem. Commun. 7, 378–381.